Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
ACS Chem Biol ; 15(9): 2331-2337, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1387140

RESUMEN

We report on using the synthetic aminoadamantane-CH2-aryl derivatives 1-6 as sensitive probes for blocking M2 S31N and influenza A virus (IAV) M2 wild-type (WT) channels as well as virus replication in cell culture. The binding kinetics measured using electrophysiology (EP) for M2 S31N channel are very dependent on the length between the adamantane moiety and the first ring of the aryl headgroup realized in 2 and 3 and the girth and length of the adamantane adduct realized in 4 and 5. Study of 1-6 shows that, according to molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations, all bind in the M2 S31N channel with the adamantyl group positioned between V27 and G34 and the aryl group projecting out of the channel with the phenyl (or isoxazole in 6) embedded in the V27 cluster. In this outward binding configuration, an elongation of the ligand by only one methylene in rimantadine 2 or using diamantane or triamantane instead of adamantane in 4 and 5, respectively, causes incomplete entry and facilitates exit, abolishing effective block compared to the amantadine derivatives 1 and 6. In the active M2 S31N blockers 1 and 6, the phenyl and isoxazolyl head groups achieve a deeper binding position and high kon/low koff and high kon/high koff rate constants, compared to inactive 2-5, which have much lower kon and higher koff. Compounds 1-5 block the M2 WT channel by binding in the longer area from V27-H37, in the inward orientation, with high kon and low koff rate constants. Infection of cell cultures by influenza virus containing M2 WT or M2 S31N is inhibited by 1-5 or 1-4 and 6, respectively. While 1 and 6 block infection through the M2 block mechanism in the S31N variant, 2-4 may block M2 S31N virus replication in cell culture through the lysosomotropic effect, just as chloroquine is thought to inhibit SARS-CoV-2 infection.


Asunto(s)
Adamantano/farmacología , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/prevención & control , Canales Iónicos/antagonistas & inhibidores , Sondas Moleculares/química , Proteínas de la Matriz Viral/antagonistas & inhibidores , Adamantano/análogos & derivados , Adamantano/química , Adamantano/metabolismo , Betacoronavirus/efectos de los fármacos , Sitios de Unión , COVID-19 , Células Cultivadas , Cloroquina/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Variación Genética , Humanos , Virus de la Influenza A/química , Virus de la Influenza A/genética , Gripe Humana/tratamiento farmacológico , Cinética , Sondas Moleculares/metabolismo , Pandemias/prevención & control , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/prevención & control , Unión Proteica , SARS-CoV-2 , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
2.
Molecules ; 26(7)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1159011

RESUMEN

Protein kinases are a large class of enzymes with numerous biological roles and many have been implicated in a vast array of diseases, including cancer and the novel coronavirus infection COVID-19. Thus, the development of chemical probes to selectively target each kinase is of great interest. Inhibition of protein kinases with ATP-competitive inhibitors has historically been the most widely used method. However, due to the highly conserved structures of ATP-sites, the identification of truly selective chemical probes is challenging. In this review, we use the Ser/Thr kinase CK2 as an example to highlight the historical challenges in effective and selective chemical probe development, alongside recent advances in the field and alternative strategies aiming to overcome these problems. The methods utilised for CK2 can be applied to an array of protein kinases to aid in the discovery of chemical probes to further understand each kinase's biology, with wide-reaching implications for drug development.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Sondas Moleculares/química , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , COVID-19 , Quinasa de la Caseína II/química , Diclororribofuranosil Benzoimidazol/química , Diclororribofuranosil Benzoimidazol/farmacología , Humanos , Sondas Moleculares/metabolismo , Naftiridinas/química , Naftiridinas/farmacología , Fenazinas/química , Fenazinas/farmacología , Polifenoles/química , Polifenoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología
3.
Angew Chem Int Ed Engl ; 60(12): 6799-6806, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: covidwho-985937

RESUMEN

Activity-based probes are valuable tools for chemical biology. However, finding probes that specifically target the active site of an enzyme remains a challenging task. Herein, we present a ligand selection strategy that allows to rapidly tailor electrophilic probes to a target of choice and showcase its application for the two cysteine proteases of SARS-CoV-2 as proof of concept. The resulting probes were specific for the active site labeling of 3CLpro and PLpro with sufficient selectivity in a live cell model as well as in the background of a native human proteome. Exploiting the probes as tools for competitive profiling of a natural product library identified salvianolic acid derivatives as promising 3CLpro inhibitors. We anticipate that our ligand selection strategy will be useful to rapidly develop customized probes and discover inhibitors for a wide range of target proteins also beyond corona virus proteases.


Asunto(s)
Proteasas 3C de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/química , Inhibidores de Cisteína Proteinasa/química , Técnicas de Sonda Molecular , Sondas Moleculares/química , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/química , Dominio Catalítico , Proteasas 3C de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Células Hep G2 , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Prueba de Estudio Conceptual , Unión Proteica , Bibliotecas de Moléculas Pequeñas/metabolismo , Relación Estructura-Actividad
5.
Chembiochem ; 21(23): 3383-3388, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: covidwho-676815

RESUMEN

The global pandemic caused by SARS-CoV-2 calls for the fast development of antiviral drugs against this particular coronavirus. Chemical tools to facilitate inhibitor discovery as well as detection of target engagement by hit or lead compounds from high-throughput screens are therefore in urgent need. We here report novel, selective activity-based probes that enable detection of the SARS-CoV-2 main protease. The probes are based on acyloxymethyl ketone reactive electrophiles combined with a peptide sequence including unnatural amino acids that targets the nonprimed site of the main protease substrate binding cleft. They are the first activity-based probes for the main protease of coronaviruses and display target labeling within a human proteome without background. We expect that these reagents will be useful in the drug-development pipeline, not only for the current SARS-CoV-2, but also for other coronaviruses.


Asunto(s)
Proteínas M de Coronavirus/química , Cetonas/química , Sondas Moleculares/química , SARS-CoV-2/enzimología , Sitios de Unión , COVID-19/diagnóstico , COVID-19/virología , Dominio Catalítico , Proteínas M de Coronavirus/metabolismo , Humanos , Cetonas/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Sondas Moleculares/metabolismo , Péptidos/química , SARS-CoV-2/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA